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PREFACE

ERIC is an object-oriented programming language designed for

supporting the development of intelligent, discrete, event-driven

simulations. ERIC was developed as part of an on-going research

effort at the Rome Air Development Center to build a new genera-

tion of knowledge-based simulations that support Battle

Management studies.

Object-oriented programming languages are designed to

support the development and maintenence of large, complex
A

software systems. These systems are composed o objects which

have certain attributes and behaviors. Objects communicate with

each other by message passinQ. The object-oriented paradigm is

particularly useful for modelling and simulation because many

real-world systems are composed of objects whose interactions can

be represented by messages.

This report is a description of the ERIC programming

language. It does not assume the reader is familiar with object-

oriented programming or simulation; however, it does assume that

the reader is familiar with Lisp.
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Chapter 1

Objects, Classes, and Inheritance

1.0 Objects

Objects are software entities that model real-world things.

They combine the properties of both data and procedures: objects

maintain a local state and are capable of performing computations

using and/or modifying their local state.

The local state of an object consists of its attributes.

Attributes describe characteristics of an object. For example,

an object modelling an automobile might have color, engine size,

and number of doors as attributes.

An object performs computation via behaviors. A behavior

is a piece of procedural code associated with a given object or

group of objects. Each behavior is identified by a particular

message, which will invoke the behavior when the message is

received by an object. For example, an automobile object might

be sent a message telling it to start its engine. Message

passing is how objects in ERIC interact with each other and the

user. Message passing is one of the most important

characteristics of ERIC and will be examined in more detail in

Chapter 2.
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There are two types of objects in ERIC: class objects and

instance objects. A class is a description of one or more

similar objects. In other languages, such as Pascal, classes

correspond to types. An instance is an actual member of a class.

For example, 3 is an instance of the class integer. A class can

be a member, or subclass, of a more general class. Integers are

a subclass of numbers. The ability to build more specific

classes (such as integers) out of a more general class (numbers,

* '~in this case) is a powerful abstraction mechanism. ERIC

provides this mechanism via class inheritance. A subclass can

inherit attributes and behaviors from one or more superclasses.

[For the rest of t.. manual, use of the term "instance object"

will be restricted tc.o ~Jy those members of a class that are not

themselves classes. In the numbers example given above, 3 will

17,e considered an instance object, but integer will not. Also,

the terms class and class object will be used interchangeably.]

1.1 Classes

Classes are used to model the organization of a system

being simulated by an ERIC program. The system is decomposed

into various real-world objects, and this decomposition is mapped

onto software objects. More often than not, class objects are

defined that are never actually instantiated. These class
2
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objects exist purely for organizational reasons. This fact

reflects an important insight into the implementation of object-

oriented simulations: class objects should be used to organize

and manage the objects in a simulation; they should not be an

operational part of it. A careful examination of the system

being simulated is necessary in order to determine which classes

i should be organizational in nature, and which classes should

actually be instantiated.

There is a predefined class in ERIC called something. All

other classes are built on top of (and hence, are subclasses of)

something. Something provides many basic behaviors for all

objects, such as how to print out attributes, make instances, or

define new behaviors. New classes are defired in ERIC by using

the define-class special form:

(define-class name +
( :parents superclass )
(:documentation form)

((:instance-attributes (variable .
(variable (init-value }) )

((:class-attributes (variable I
(variable (init-value) })

Example 1 shows several class definitions. This example will be-".

referred to several times in the following discussion.

The :parents list is the only required information for

.. Sdefining a new class. It specifies the new class' inheritance

chain. This chain determines which attributes and behaviors will

be inherited from other classes. In Example 1, both fish and

mammal have something as the only superclass in their inheritance
3
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chain. Marine-mammal, however, has three superclasses in its

chain: fish, mammal, and something, in that order. Notice that

something is included in the inheritance chain even though it was

not explicitly included in marine-mammal's :parents list. The

order of the superclasses in the inheritance chain is very

important, because this order determines what attributes and

behaviors an object inherits.

,
Example 1

Sample Class Definitions

(define-class fish
(:parents something)
(:class-attributes
(environment 'water))

(:instance-attributes
cgenus
species -"

&:r. ;n-name
ler~g7-h))

(define-class mammal
(:parents something)
(:class-attributes
(environment 'land))

(:instance-attributes
genus
species
common-name
(length 'long)))

(define-class marine-mammal
(:parents fish mammal)
(:instance-attributes

(weight '2-tons)))

4
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Three rules govern the ordering of the inheritance chain:

1. A class always precedes its own superclasses.
2. The local ordering of superclasses in every object's

:parents list is preserved.
3. Duplicate classes are removed from the ordering.

In Example 1, the inheritance chain for fish and mammal are

trivial; they are [fish, something] and [mammal, something],
-°

respectively. The inheritance chain for marine-mammal is a bit

more complex. Following the above three rules, we will construct

marine-mammal's inheritance chain. The chain begins with marine-

mammal (Rule 1). Next, we add fish and its inheritance c hain.

So far, the (incomplete) chain is:

[marine-mammal, fish, something...

The next class in the parents list is mammal. Upon examining the

inheritance chain of mammal, we discover that something is a

superclass of mammal. According to Rule 1, we must place mammal

before something. The chain is now:

[marine-mammal, fish, mammal, something...

Continuing, we add the rest of the inheritance chain for mammal,

which consists of something, to the end of the partial chain. We

now have:

[marine-mammal, fish, mammal, something, something]

According to Rule 3, the duplicate something is removed from the

chain. The final result is the complete inheritance chain for

marine-mammal:

.. 5 I
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[marine-mammal, fish, mammal, something]

p': Figure 1 shows the complete inheritance hierarchy for Example 1.

It is possible to write class definitions that cannot be

ordered using the three rules. As an example, consider these

class definitions:
(define-class A (:parents B C))

(define-class C (:parents B))

From the definition of object C, we find that C must precede B

because a class always precedes its superclasses, but B must

precede C in order to preserve the local ordering of superclasses

in the .rents list of A. When an inheritance chain cannot be

computed according to the three rules, ERIC signals an error and

prints out information detailing which classes are in conflict.

The :documen-. 2,: list is an optional string that is used

to document the class being defined.

The optional :instance-attributes list declares what new

attributes an instance of the defined class will have in addition

_. to those it gets via inheritance. The :instance-attributes list

is composed of zero or more attribute names or name-value pairs,.-

where value is a lisp form that is evaluated at the time of

definition to a default initial value. If a default value is a

not provided, its default is NIL. Attributes are inherited by

first taking the union of the instance variables of each class in

the inheritance chain and then eliminating duplicates. When

eliminating duplicates, precedence is given to the leftmost

6
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attribute with a default value. (Leftmost being with respect to

the inheritance chain.) In Example 1, an instance of marine-

mammal will have the following attributes: weight (with a

default value of 2-tons), genus, species, common-name, and

length (with a default value of long).

Class attributes are declared by an optional :class-

attributes list and are inherited in a way similar to instance

attributes. Class attributes belong only to class objects; they

are not inherited by instance objects. Class attributes can be

used to store any type of information, but are most useful for

storing information that is common to all members belonging to a

class and for managing instance objects and subclasses.

The value returned by the define-class form is the actual

class object being defi:ied. This object is also bound to the

symbol in the name position of the define-class form. This

symbol is declared to be a global variable when the define-class

form is evaluated, so you can always use this symbol as a

"handle" to get ahold of the class object anywhere in your

programs. You should be careful not to rebind this symbol to

another value, or you may not be able to get ahold of the class

object again.

Class objects identify themselves when printed as:

#<CLASS x>

where x is the name of the class, as specified in the class'

define-class form. For example, the result of typing the form:
8
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(eval marine-mammal)

at the top-level of a lisp system after Example 1 has been

evaluated will be the class object marine-mammal, which prints r

itself as:

#<CLASS MARINE-MAMMAL>

There is also a predicate function, class-object?, of one

argument that will return true if an object is an ERIC class

object.

Every class object in ERIC has several predefined

attributes which may be inspected by users: documentation, the

string which may have been included in the :documentation list of

the class' define-class form; parents, the :parents list from

the define-class form; offspring, a list of all the immediate

subclasses and instances of this class; and status and schedule,

whose functions will be explained in Chapter 4. The value of

these attributes may be used in your programs, but you should

never try to change their values. These attributes are %

established and maintained by ERIC; any modification by a user

could (and probably will) cause problems in the evaluation of

programs.

V
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1.2 Instance Objects

Instances are the operational elements of an object-

oriented simulation. It is the interaction of instance objects

that simulates the interaction of real-world objects in a system.

Instance objects can be created in two ways: sending a class a

make instance message, or by using the function make-object.

There are two types of make instance messages: the first

creates a named instance belonging to a specified class; the

second is similar, but also allows the specification of attribute

values. The first message is of the form

(ask class make instance x)

which results in the creation of a named instance of class that

is bound to the symbol x. As was the case with class names, the

symbol x is declared to be a global variable and should not be

rebound or you may lose your handle on the object. To aid in

'p identification, the print name of the object created is #<x>.

The second make instance message is of the form:

(ask class make instance x with (attribute value] )

where attribute is an instance attribute of class and value is

the value assigned to that attribute. For example,

(ask fish make instance george with
genus betta
species splendens
common-name siamese-fighting-fish)

10
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will return the object george, with print name #<GEORGE>. Any

attributes that are not specified in the attribute-value

portion of the message will take their normal default values. In

this example, george will have a default length of NIL.

The function Aaka-object, of the form

(make-object class &rest attributes)

4. creates an anonymous instance of type class. An anonymous

instance does not have a name associated with it, is not bound to

any symbol, and prints itself as

#<unnamed instance of class: N>

where N is a unique serial number which can be used to visually

tell if two anonymous objects are the same. The &rest arguments

must be keyword-value pairs that specify the initial value of

instance attributes. A keyword is simply an attribute name

prefixed by a colon. Thus,

(make-object fish
:genus 'betta
:species 'splendens
:common-name 'siamese-fighting-fish)

will create an anonymous instance of fish with the same attribute

values as george.

The single argument predicate instance-object? returns true

*if an object is an ERIC instance. Instance objects have three

predefined attributes: parents, schedule, and status. Parents

is a single element list pointing to the class of which the

instance is a member.

11 i
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Chapter 2

Behaviors and Messages

2.0 Message Passing

Recall that objects have behaviors which can perform

computations. Behaviors are pieces of procedural code, each of

which is identified by a message, which is a sequence of symbols.

Behaviors are invoked by a form of indirect function calling i-

known as message passing. When an object is passed a message, %

the behavior identified by that message is executed.

A message is passed to an objec*- with the ask function.

Borrowing from the examples in Chapter 1, george's common name

could be determined by sending this message:

(ask george recall your common-name)
WI.

to which george would reply siamese-fighting-fish. The general

form of the ask function is:

(ask object message)

where object is either an ERIC class or instance object, and

message is the sequence of symbols denoting the message being

sent to the object.

12
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2.1 Defining Behaviors

Suppose we would like to provide members of the class fish

with a set of behaviors which might reflect how a fish actually

lives and behaves. A behavior for perpetuating the species could

be defined by:

(ask fish when receiving (perpetuate the species)
(ask myself find a fish of opposite sex)
(ask myself perform courtship behaviors)
(ask myself settle down and raise kids))

There are several important things to notice in this example.

First, we have just defined a behavior for members of the

class fish that is associated with the message "perpetuate the

species". Behaviors are defined by a message of the form:

(ask class when receiving pattern {action)

where pattern is a list specifying the message name and action is

zero or more lisp forms that are to be evaluated when the

behavior is invoked.

Second, the use of 'myself' in the class position of the

messages inside the behavior being defined requires an

explanation. The variable myself has a special meaning in ERIC.

Each time a message is passed, myself is bound to the object the

message is being sent to. For example, during the evaluation of:

(ask george perpetuate the species)

the variable myself will be bound to the instance object george.

13
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Myself allows the definition of behaviors that are applicable to

any member of a class, without having to know the identity of the

member.

Third, when a member of fish is sent this message, it will

send out three more messages to itself: find a mate, perform

courtship, and have children. The three messages sent out by our

example must also have behaviors defined to handle them. ERIC

behaviors are not limited to sending messages to myself. Inside

a behavior you can send messages to any object, be it an instance

or class.

.,.I

(There is one other global variable in ERIC that has a special

meaning: *message-sender*, which is bound to the object which

sent the current message. If the message was not sent by an ERIC

object, *message-sender* is bound to the symbol 'user'.]

2.2 Messages are Not Evaluated

Ask is a lisp macro which evaluates only its class argument;

the message argument is not evaluated. If you wish to include

forms that get evaluated in a message, you must mark the forms

with evaluation prefix characters. These special characters

tell ERIC that the form directly following them should be

evaluated, and the result should be spliced into the message

sequence. 1

~ u.~j14
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There are two evaluation prefix characters in ERIC: the

exclamation mark ('!), and the ampersand (&.Both of these

characters specify that the form immediately following them is to

be evaluated, but the two characters differ in how they specify

V the result is to be spliced into the message sequence. The

exclamation mark specifies that the result is to be spliced in

"as is." The ampersand should only be used with forms that

evaluate to a list; this list is then "unwrapped" and spliced

into the message. Example 2 illustrates how the evaluation

prefix characters work.

2.3 Messages are Actually Patterns

Behaviors which could respond to classes of messages would

be more useful than behaviors that can only respond to just one

specific message. Take as an example the "ask george recall your

common-name" message. Without some way to define behaviors for

classes of messages, it would be necessary to write a different

Example 2
Ask Form Evaluation

p

(ask thing go to !place) ==> (ask george go to tahiti)
thing =george
place = tahiti

(ask object go to &place) =>(ask george go to the south sea isles)
object = george
place = (the south sea isles)

(ask mammal &(list 'growl) !(+ 1 2) times)
=>(ask mammal growl 3 times)

15
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behavior for recalling every attribute an object has. This could

be quite tedious. It is desirable to have a single behavior that

would be responsible for handling all messages of the form

"recall your x".
1.%

Writing behaviors that handle classes of messages is

accomplished in ERIC by using pattern variables in the message

pattern of a behavior definition. The actual definition of the

behavior for recalling the value of an object's attribute is:

(ask something when receiving (recall your >attribute)
(object-get myself attribute))

Rttribute is a pattern variable in this definition.

Pattern variables are denoted by the pattern matching prefix

characters > and +. (The greater-than sign and the plus sign,

respectively.) When used in a pattern, these prefix characters

act as wildcards -- they match against anything. The > prefix

will match single forms such as an atom or a parenthesized list.

The + prefix will match any number of consecutive forms. If a

symbol is prefixed by either of these characters in a pattern,

* the matcher will bind the symbol to the matched form. Example 3

gives some examples of how pattern matching prefix characters

work. In this example, attribute is prefixed by the > rharacter,

so if a match occurs, attribute will be bound to the attribute

whose value is being requested. Pattern variables perform the

role of formal parameters for behaviors.

16



Pattern Datum Results

(a b c) (a b c) match, no bindings
(a b c) (a i c) no match
(a >b c) (a 1 c) match, b = 1
(a >b c) (a (1 2) c) match, b = (1 2)
(a > c) (a 1 c) match, no bindings
(a >b c) (a 1 2 c) no match
(a +b c) (a 1 2 c) match, b = (1 2)
(a >b c) (a c) no match
(a +b c) (a c) match, b = ()
(a +) (a 1 2 c) match, no bindings
(>a +b c >d) (e f c g) match, a = e,

b (f),
d =g

MatchinQ Prefix Characters
S Example 3

2.4 Inheritance of Behaviors

Objects inherit behaviors from their superclasses, just like

they inherit attributes. The mechanism is fairly simple and is

based on an object's inheritance chain. When an object is sent a

message, it looks to its parent classes for a behavior with a

pattern that matches the message. Each superclass on the

inheritance chain is checked, from left to right, until a

matching behavior is found. If no suitable behavior is found,

ERIC signals an error.

Going back to the objects defined in Example 1, let's

evaluate the following behavior definitions:

(ask something when receiving (move)
(print 'moving))

17

X.



(ask fish when receiving (move)
(print 'swimming))

V. (ask mammal when receiving (move)
(print 'walking))

4%%After evaluation, something, fish, and mammal will all have a

pattern-action pair for the message "move" in their repertoire of

behaviors. If we now evaluate:

(ask george move)

the result is that 'swimming' is printed. George looked to its

parent, fish, for a matching behavior, found it, and evaluated

Ait. If we ask fish or mammal to move, the result is that

'moving' is printed. You might have expected fish to print

'swimming' and mammal to print 'walking', but remember: an object

looks to its parent classes for its behaviors. The parent class

for both fish and mammal is something, so something's move

behavior is evaluated. If we ask marine-mammal to move,

,swimming' is printed.

It may seem strange that a class object doesn't look to

itself for a matching behavior, but there is a simple reason why

it doesn't. In ERIC, a class defines a set of objects -- it is

not a member of that set. A class object is a member of its

parent classes, so that is where it should look for its

behaviors. Because all objects search for behaviors by looking

to their parents, both instance objects and class objects have

the same behavior inheritance mechanisms and act in a uniform

manner.
18
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2.5 Before and After Daemons

A daemon is a piece of code that is automatically invoked

when some specified event occurs. In ERIC there are two kinds of

daemons: before daemons, which are evaluated before a specific

message is handled; and after daemons, which are evaluated after

a specific message has been handled.

Daemons are useful in a variety of ways; two examples of

which will now be given. Often a behavior is defined for a given

class, say x. Each of the subclasses of x would like to use this

behavior, but a few of the subclasses need to perform different

preparatory actions before this behavior is evaluated. Each

subclass of x that needs to perform preparatory actions can

define a before daemon to do them. Daemons are also useful for

V uncoupling I/O functions, such as graphics, from behavior defini-

tions. Because the I/O is separated from behaviors, it is easy

to run simulations with or without graphics and to convert

simulations to work with a different I/O device.

Deamons are defined in a way similar to behaviors. Before

daemons are defined by a message of the form:

(ask class before receiving pattern (action*

and after daemons are defined by the message:

(ask class after receiving pattern (action })
A class can have only one before and one after daemon for each
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message pattern. It is not necessary for a class to have a

behavior that handles this message, as long as one of its super-

classes does.

The model for ERIC's message handling mechanism developed in

Section 2.4 must now be modified to include daemons. When an

object is sent a message, the parent classes on the object's

inheritance chain are searched from left to right for before

daemons that match the message. If a matching before daemon is
found, it is evaluated and the search continues with the next

class in the chain until all the superclasses on the inheritance

chain have been searched. Then a search is made for the behavior

which will handle the message (henceforth also called the primary

behavior), which is made according to the description given in

Section 2.4. After the proper behavior has been evaluated, the

parent classes on the object's inheritance chain are searched

from right to left for after daemons that match the message. If

a natching after daemon is found, it is evaluated and the search

continues with the next class in the chain until all the super-

classes on the inheritance chain have been searched.

,.. N~ote that all the before and after daemons defined along an

object's inheritance chain for a given behavior are executed, and

that after daemons are executed in the reverse order of !-efore

daemons. Imagine that the inheritance chain is a path you are

walking along. You start at the beginning of the path (the left

end of the chain) and walk to the end of the path (the right end
20I%
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of the chain), stopping along the way to evaluate any appropriate

before daemons you find. While you search for appropriate before

daemons, you also look for the correct behavior to handle the

message. When you come to the end of the path, you evaluate the

behavior you found, and turn around to walk back tothe beginning of

the path. As you walk back, you evaluate any appropriate after

daemons you find as you come across them. Once you reach the

beginning of the path again, your journey is finished.

An example of daemon inheritance is in order. Continuing in

- the spirit of Example 1, suppose the following forms are

evaluated:

(ask fish before receiving (move)
(print 'before-fish-move))

(ask fish after receiving (move)
(print 'after-fish-move))

(ask mammal before receiving (move)
(print 'before-mammal-move))

(ask mammal after receiving (move)
(print 'after-mammal-move))

(ask marine-mammal before receiving (move)
(print 'before-marine-mammal-move))

(ask marine-mammal after receving (move)
(print 'after-marine-mammal-move))

If you now send george a message to move, the following would be

printed:

before-fish-move
sw i mm i ng
after-fish-move

21
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A more complex example would be to send an instance of

marine-mammal a move message, which would result in this being

printed:

*before-marine-mammal-move
44 before-fish-move

before-mammal-move
swimming
after-mammal-move
after-fish-move
after-marine-mammal-move

Daemons do not return any values. They are useful for side-

effect only. The value returned by a message pass is the value

returned by the behavior which handled the message, regardless of

any daemons that may have been evaluated. Daemons may use para-

meter values that are accessible via pattern variables used in

*the pattern part of their defining message.9;.%

2.6 Wrappers

The final behavioral concept in ERIC that will be discussed

is the wrapper. Daemons let you put code before and after the

execution of a behavior; wrappers allow you to put code around

the execution of a superclass' behavior. Wrappers are not a

distinct class of procedural entities like before and after
V

daemons are; instead, they are primary behaviors that use the

continua-passing macro to continue searching the inheritance

chain for message handlers.

%%
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The continue-passing macro can be called either with no

arguments or with one argument. In the no argument case,

continue-passing allows the behavior currently handling a message

to execute the next behavior along the inheritance chain capable

of handling the same message. Consider the following simple

example, based on the objects defined in Example 1. Several new

behaviors are added by sending the following messages:

(ask something when receiving (print >n)
(print 'something)

(princ n))

(ask fish when receiving (print >n)
(print 'fish)
(princ n)

* (continue-passing))

(ask mammal when receiving (print >n)
(print 'mammal)
(princ n))

After defining these new behaviors, we send george a message

to print the number 5:

(ask george print 5)

and the resulting output is:

fish 5
something 5

,'S

The "print 5" message was first handled by fish's "print >n"

behavior, which printed the first line of output, and then the

call to continue-passing sends the "print 5" message on up the

inheritance chain to something, which then prints the second line

of output. Similarly, if the same message is sent to marine-

mammal:
23 %
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(ask marine-mammal print 5)

the resulting output is:

fish 5

mammal 5

because after fish, the next superclass on marine-mammal's

inheritance chain that has a handler for the "print 5" message is

mammal.

The message sent up the inheritance chain by a wrapper can

be altered by including a new message as an argument to continue-

-: passing. If we redefine fish's print behavior to be:

(ask fish when receiving (print >n)
(print 'fish)
(princ n)
(continue-passing (print !(- n 1))))

and send the message:

(ask george print 5)

the result now is:

fish 5
something 4

Note that the print message was changed by calling the continue-

passing macro with the new message to be sent up the inheritance

chain as its argument.

Continue-passing is a powerful mechanism for side-stepping

normal message handling in ERIC. The new message passed up the

inheritance chain can be anything you desire; it is not limited

to being a variant of the original message. You should use this

24
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mechanism with discretion, however, because its run-time behavior

may be difficult to comprehend by just looking at the code. Note

that you can only use continue-passing at most once in a beha-

vior. It will not work correctly if you try to use it twice.
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Chapter 3

Predefined Behaviors

3.0 Behaviors Defined for Something

This chapter describes the predefined behaviors in ERIC.

These behaviors have been defined for the object something, so

every new object you define will inherit these behaviors.

3.1 Making Instance Objects

make instance >ob

Creates a named instance object of the class that was sent

the message. The instance is bound to the symbol specified by

ob. See Section 1.2 for more information. Applicable only to

class objects; instance objects will signal an error.

make instance >ob with +attributes

Does everything the previous message does, but allows you to

assign initial values to the newly created instance's attributes.

Rttributes is one or more attribute-value pairs. See Section 1.2

for more details and an example. Applicable only to class

objects; instance objects will signal an error.
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If ob already exists as an instance object when either of

these messages are sent, the old ob is "erased," in the sense

that it is removed from its parent's list of offspring and its

schedule is set to NIL (see Chapter 4 for the significance of

this action). However, the old ob does still exist somewhere in

the lisp environment, so that any pointers you had to it will

still be intact. If ob already exists as a class object when

either of these messages are sent, an error is signalled.

After an instance is created, it is sent an "initialize

yourself" message. The default behavior for this message does

nothing.

3.2 Defining Behaviors and Daemons

when receiving >pattern +actions
before receiving >pattern +actions

1? X after receiving >pattern +actions

These messages allow you to define primary behaviors, before

daemons, and after daemons that are local to the class object

receiving them. Pattern is the message template that will be

associated with the actions code. See Section 2.1 for more

details and an example. Applicable only to class objects;

instance objects will signal an error.

27
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forget your local behaviors matching >pattern "
forget your local before daemons matching >pattern
forget your local after daemons matching >pattern

These messages allow you to delete local primary behaviors,

before daemons, and after daemons whose invoking message matches

* pattern. These behaviors return an integer telling the number of

behaviors that were deleted. Applicable only to class objects;

instance objects will signal an error.

3.3 Print Functions

One of the most important ways an object can interact with

the user is to display information about its current state.

There are several messages for telling an object to print various

information.

print yourself

The object will display all of its attributes and values.

You get a look at the data structure representing the object.

For class objects, this includes the object's behaviors, daemons,

immediate descendants, and immediate parents.

Iprint your attributes

The object will display all of the class or instance

attributes that were declared in the object's definition. Thii5;

28
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message is useful when you are only interested in seeing the

attributes You gave the object, and don't care about the system

defined attributes. The information printed by this message is

less cluttered than that printed by the previous message.

print your >attribute

Prints the value of the attribute specified by the parameter

attribute.

J. print your local messages

Prints the local behaviors and daemons defined on this

object, in alphabetical order. If the object is a class, the

behaviors and daemons that have been defined on the class are

printed; if the object is an instance, the behaviors and daemons

defined on its parent class are printed.

print your messages

Similar to the previous message, but prints every message an

object has a handler for. This includes behaviors and daemons

that have been defined for an object and all those it inherits

Am from its superclasses, except for the primary behaviors inherited

from the superclass something. Something has so many behaviors

that they clutter the screen and obscure the behaviors you have

defined.

29



print your messages matching >pattern

Prints all of the object's behaviors and daemons capable of

handling messages matching pattern. Pattern is a list which may

contain wildcards as described in Chapter 2. For example, to see

all the messages something can respond to that begin with the

symbol print, you would send the message:

(ask something print your messages matching (print +))

3.4 Recalling the Value of Attributes

Printing the values of attributes is nice for human-object

interaction, but not very useful for object-object interaction.

These recall behaviors return values that can be used in

programs.

recall your >attribute

Returns the value of the attribute specified by the

attribute parameter.

recall the >attribute for your class

Returns the value for a class attribute, specified by the

attribute parameter, of a class to which the object is a member.

If the object sent the message is an instance, the class

attribute will belong to its parent class. If the object is a
30
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class object, the attribute value returned will be from the first

superclass on the object's parent list that has this attribute.

If attribute cannot be found for a class, an error is signalled.

recall your local messages

Returns a list of the local behaviors and daemons defined on

Nthe object. If the object is a class, the behaviors defined on

this class are returned; if the object is an instance, the

behaviors defined on its parent class are returned.

Nb recall your messages

Returns a list of all the behaviors and daemons that are

available to the object, including those which it has inherited

from its superclasses.

recall your messages matching >pattern .b

Returns a list of all the behaviors and daemons available to

the object that handle messages matching pattern.

recall your descendants

Returns a list of all the descendants of a class.

~Nb Descendants are defined to be instances and all subclasses and Nb

their instances. Applicable only to class objects; instance
Nobjects will signal an error.
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* recall your instances

Returns a list of all the instances belonging to this class

or one of its subclasses. Applicable only to class objects;

instance objects will signal an error.

recall your subclasses

Returns a list of all the subclasses of the object.

Applicable only to class objects; instance objects will signal an

*error.

recall your superciasses

Returns a list of all the superclasses of an object.

3.5 Setting Attribute Values

set your >attribute to >value

This behavior is for assigning a value to an attribute.

This works for both instance attributes and class attributes. If

the object does not have attribute as one of its defined

attributes, an error is signalled.

.
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set the >attribute for your class to >value

Assigns value to the class attribute specified by

S.attribute. Applicable only to instance objects; if this message

is sent to a class object, an error will be signalled. If the

object's class does not have attribute as one of its defined

class attributes, an error is signalled.

'Vb

* 3.6 Sending Messages to Attributes

.%.

to ask each of your >attribute to +action

Sends the message action to each element in the value of the

attribute specified by attribute. The attribute's value should

be a list. For example, to have each object in the offspring

attribute of something print itself, you would send this message:

(ask something to ask each of your offspring to pr.jiit your self)

to ask your >attribute to +action

Sends the message action to the object that is the value of

a, the attribute specified by attribute.

N. 33
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3.7 Tracing and Recording Messages j

ERIC provides two ways to observe the passing of messages:

tracing and recording. Each of these facilities serves a

different purpose. The trace facility is useful for debugging

programs and is similar to lisp tracing facilities; the recorder

saves a record of messages passed for later examination.

trace your messages matching >pattern

This behavior marks all of the class object's primary

behaviors which match pattern for tracing. Pattern may contain

wildcard matching characters. When any object that is a member

* of this class receives messages which match pattern, the trace

facility prints four pieces of information to the current

standard output stream: the current trace depth, the class that

is handling the message, the message itself, and the value

*i returned by the invoked behavior. The trace facility indents

nested message passes. This behavior is applicable only to class

objects; if sent to an instance object, an error will be

signalled.

untrace your messages matching >pattern

This behavior unmarks all of the class object's primary

bchaviors whose invoking message matches patzern so they will not

'a- 34
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be traced. This behavior is applicable only to class objects; if

sent to an instance object, an error will be signalled.

'r'.

record your messages matching >pattern to >stream
unrecord your messages matching >pattern

The recording facility is similar to the trace facility,

except that there is no indention and only the message passes are

recorded, not their results. The current simulation time and the
.=

object who sent the message are also included with each message

record. Stream must already be open for output, and you must

close it when you are finished recording.
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Chapter 4

Event Scheduling

4.0 The CLOCK

The features of ERIC described so far have only dealt with

its object-oriented programming capabilities. Objects alone do

not a simulation make. There must also be a temporal control

mechanism which allows objects to interact over time. In ERIC

this mechanism is the clock object. The clock controls the flow

of time in the simulation and also allows actions to be scheduled

for execution in the future. The clock is an instance object of

class simulation-clock, and has three instance attributes:

simtime , event-list, and ticksize .

Simtime is the current time in the simulation. In ERIC time

is represented as a real number which has no built-in scale of

measure. It is left to the programmer to decide what scale of

measure (if any) is associated with time, and to use this scale

consistently within all object behaviors. For example, if you

wish time to be measured in seconds, you should write behaviors

that consistently refer to time in terms of seconds. Because time

is represented as a real number, there is no indivisible interval

of time in ERIC.
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Simulations generally keep actions scheduled to happen in

the future in some sort of time-ordered queue. In ERIC, this

queue is maintained as the clock's event-list. The clock V.

moves the simulation forward in time by executing events in the

queue. The progression of simulation time is not smooth and

continuous -- it jumps from one event to the next. The interval

of time between events never really exists. %

It is often convenient to stop the execution of a simulation

at regular intervals, or to run a simulation for a specified

period of time. The clock will start the execution of a simula-

tion when it receives a tick message:

(ask clock tick)

The simulation will then run for a length of time specified

by the clock's ticksize attribute, which controls how many time

units pass during each tick of the clock. Changing the value of
r

ticksize is one way you can control how long a simulation runs.

Another way is to use the message: -

(ask clock tick >n times)

which is simply a loop which sends clock a tick message n

times.

The "ideal" value of ticksize varies from simulation to

simulation. Bear in mind that the value of ticks~ze has no

direct effect on the behavior of the simulation; the clock's

ticking is only for interaction and control purposes. Generally,

the tick size should be longer than the mean time between events
37
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", in a simulation. There is not much purpose in stopping every

second of simulation time if the mean time between events is

* several minutes of simulation time.

4.1 Scheduling Events

There are two basic messages for scheduling actions to

happen at some future time:

(ask clock to schedule >object to +action at time >x)

(ask clock to schedule >object to +action in >x time units)

The first message schedules an action to happen at some absolute

time; the second message schedules an action to happen relative

to the time at which the message was sent. Rction must be a

.message that object can handle, or there will be an error

signalled at some point in the future when the object tries to

execute the action.

A small example of scheduling is in order. Suppose we want

Sbcha-vior that makes a member of the fish class move every 10

secconds. Notice that time was referred to in terms of seconds;

you can assign any scale of measure to simulated time by simply

Aei-iding to use that scale consistently throughout your simula-

tion code. To make the use of seconds explicit, a new scheduling

behAvior for clock is written:

(ask clock when receiving (to schedule >object
to +action in >x seconds)

(ask clock to schedule !object to &action in !x time units))
38
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In a similar way, you can define behaviors for dealing with

time in whatever scale of measure you like. Now we can write the

new behavior for fish, which will be invoked by the message "move

around":

(ask fish when receiving (move around)
(ask myself move)
(ask clock to schedule !myself to move around in 10 seconds))

This behavior first tells the object send the message to move,

and then schedules the object to move around again in ten

seconds. We could set george, the fish created in Chapter 1, in
-"p.

motion by sending it the message "move around" and then asking

clock to tick a few times. Every ten seconds george would move

and then reschedule himself to move around in another ten

4.. seconds.

4.2 The Queueing Mechanism in More Detail

There is more to the event queueing mechanism than was

described in Section 4.0. A thorough grasp of this mechanism is

central to understanding how ERIC works. ERIC's scheduler is a

bit unusual in that the event queue is distributed between the

clock and the other objects in the simulation.
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Studies have shown that simulations spend a large percentage

of their run time managing their event queue. Therefore, it is

essential that a simulation language provides an efficient

queueing mechanism. Managing the event queue mostly consists of

two operations: inserting new events into the proper place in the

ordered queue, and retrieving the event which should be executed

next. Since the queue is time-ordered, the retrieval operation is

trivial. Insertion is much more expensive than deletion, with

the cost of inserting an event depending on how large the queue
"p.

is. It is also expensive to delete an event from the queue.

However, in most simulations this is a rare operation, and some

simulation languages do not support event deletion. Like inser-

tion, the cost of a deletion depends on the event queue's size.

ERIC was designed to support simulations which are composed

of intelligent objects. One of the things intelligent objects in

the real world do a lot of is build, execute, and modify plans;

it is reasonable to assume that intelligent objects in a simula-

tion would need to do the same. Therefore, ERIC should make it

easy and efficient for objects to examine and modify their

scheduled future events. That means providing an efficient way

to search for, insert, and delete events in the event queue.

This is where ERIC's distributed queueing mechanism comes in.

As mentioned earlier, the length of the event queue is an

important factor in how long it takes to perform search, insert,

and delete operations. Therefore, it is desirable to keep the

40
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event queue as small as possible. The first part of ERIC's queue

-, mechanism, the clock's event-list attribute, keeps track of

which objects have actions scheduled and when the actions are to
be executed. Actually, the event-list only keeps pointers to

a smail number of the (possibly many) events scheduled for a ,.

given object. Ideally the event-list will contain only one

reference to a given object, but this is not always possible.

Keeping only a few pointers to each object helps reduce the size

of the event-list.

Each object's schedule attribute contains information about

its scheduled future actions. Schedule stores a time ordered

list of data structures called plans, which contain three pieces

of information: what action is to be performed, when the action

is to be performed, and who scheduled the action. Allowina each
.4.,

object to store its own plans facilitates the examination and

modification of plans. It is far more efficient to have an

object rummage through its schedule attribute, which contains only

its own scheduled future actions, than to have it rummage through

a monolithic event queue that contains every object's future

actions.

When an action is scheduled for the object X, the clock

checks X's schedule for plans. If X currently has no plans in

its schedule, or if the new action is supposed to happen before4.
any event currently in the schedule, the clock places a reference

to X's future action in event-list. If X currently has actions
41
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scheduled to happen before the new action, then there already is

an appropriate reference to X in the event-list, so a new

reference is not inserted. (This is how the event-list size is

kept down to about one reference per object.) In either case,

kthe future action is inserted into the object's schedule.

When the clock pulls an event off the event-list for

execution, it checks the schedule of the object specified in the
. .%

event to see if the object has a plan that should be executed at

the current time. If so, it is executed; if not, nothing

happens. In either case, the clock then puts a reference to the

object's next scheduled action into the event-list. The cost of

checking an object's schedule when there is nothing to do is less

expensive than trying to delete an action from the event queue.

*.-'. This allows plans to be deleted or modified efficiently.

4.3 Objects Can Die

Another benefit of the distributed event queue is that it is

easy to "kill" an object. In the physical world, objects can be

destroyed and are no longer able to perform actions. All

instance objects in ERIC have a status attribute which is either

the symbol 'alive' or 'dead'. An instance object can be killed

by sending it the message:

(ask object kill yourself)
42
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Unlike most dead objects in the physical world, dead ERIC

objects still exist and are able to respond to messages sent to

them. However, they cannot be scheduled to perform any actions

in the future and they will not perform any actions that had been

scheduled prior to their death. If you try to schedule an action

for a dead object, an error will be signalled. It may be neces-

sary in your application to perform certain actions when an

object dies; remember that you can use daemons or wrappers for

this.

Two lisp predicate functions, live-object? and dead-object?,

tell you if an object is alive or dead, respectively. You should

avoid modifying the status attribute in your own code. If you

need to keep information about an object's "status" with respect

to your application, use an instance attribute of your own

making.

4.4 Plan Manipulation

As mentioned earlier, the future scheduled actions for an

object are stored in the object's schedule attribute in the form

of plans. Each plan is a data structure which holds three pieces

of information: the action to be performed, the time when the

action should be performed, and who scheduled the action. These

pieces of information can be retrieved from a plan with the
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functions get-plan-action, get-plan-time, and get-plan-scheduler,

respectively. Each of these functions takes a plan as their sole

argument.

Several behaviors are provided that allow you to manipulate

an object's schedule. They are:

forget your plans matching >pattern

Removes all of an object's plans whose action matches

pattern from schedule. The matching plans will not get executed.

Pattern may include any number of wildcard pattern variables.

forget your plans at time >x

Forgets all of an object's plans that are scheduled to

happen at time x. These plans will not get executed.

forget your plans before time >x

Forgets all of an object's plans that are scheduled to

happen before (but not including) time x. These plans will

not get executed.

forget your plans after time >x

Forgets all of an object's plans that are scheduled to

happen after (but not including) time x. These plans will

not get executed.

44

Jb ..



forgot your plans between times >timel and >time2

Forgets all of an object's plans that are scheduled to

happen between times timel and time2, inclusive. These plans

will not get executed.

If these behaviors do not satisfy the needs of your

application, you can write your own. You are allowed only to

remove plans from an object's schedule; if you wish to add them,

-. you must send scheduling messages to the clock. Schedule contains

a list of plans, ordered from the earliest to latest time of

scheduled execution. Remember to maintain this ordering when you

.. modify schedule, or things will go awry.
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Chapter 5

Miscellaneous Matters

AXI

5.0 Purpose

'A The purpose of this chapter is to present several importanti '
short topics that do not fall neatly into the previous chapters.

Most of these topics deal with lisp functions that are useful for

programming in ERIC.

5.1 Objects are Structures

ERIC objects are implemented as CommonLisp structures. Any

of the facilities provided by CommonLisp for dealing with objects

may be used with ERIC objects. The typing system is of parti-

cular importance. All class objects in ERIC are structures of

the type 'class-object'. Instance objects are also structures,

but they may come in a variety of types.

-When a class is created via define-object, ERIC builds a

CommonLisp defstruct form appropriate for implementing instance

objects of that class. One of the many things this defstruct

form does is create a new lisp data type with the same name as
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the ERIC class name. This name can be used with the CommonLisp

function typep and type-of, so that 
N

(typep george 'fish)

is true and

(type-of george)

returns 'fish'.

The defstruct also defines accessor functions for each of an

object's instance attributes. (See the CommonLisp language

definition for more information on defstruct.) Accessor

functions perform the same job as the "recall your >attribute"

and "set your >attribute to >value" messages, but accessor func-

tions are much more efficient. However, accessor functions are

suitable only in special situations and should be used with

extreme care. The reason for this lies in CommonLisp's limited

inheritance mechanism for structures.

CommonLisp's structure facility is not designed to support

multiple inheritance of attributes. Therefore, ERIC has to map a

class' attributes (some of which may be inherited from multiple

superclasses) onto structures. This mapping is not used by the

accessor funtions generated automatically by a defstruct, so the

accessors don't always behave correctly. The only situation

where it is safe to use defstruct-generated accessor function for

a given instance attribute is when the class the attribute

belongs to will never be combined with another class that has an

-" instance attribute of the same name.
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Message passing is a lot more expensive than normal func t,,,t-

calling. Therefore, the two messages for accessing object attri -

butes can exact quite a toll on a simulation's run-time perform-

ance. Never fear, for ERIC provides two lisp functions that will

correctly access any object's attributes (be the object a class

or an instance) more efficiently than the messages can. The

functions are object-get and object-put, and they are of

- the form:

(object-get object attribute)

(object-put object attribute value)

Using these functions to access attributes will enhance run-time

performance, but you lose the flexibility of message passing.

You will not be able to take advantage of the daemon, tracing, or

recording facilities ERIC provides. You should consider all

these factors when deciding which accessing method to use.

5.2 Some Useful Predicates

This section presents some useful lisp predicate functions.

They have been presented separately elsewhere in this paper, but

are gathered here for convenience. All of the predicates take a

single argument.

object? Returns true if the argument is an ERIC object.
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class-object? Returns true if the argument is an ERIC class

object, nil otherwise.

instance-object? Returns true if the argument is an ERIC

instance object, nil otherwise.

live-object'9 Returns true if the argument is a live ERIC .

-I-. object, nil otherwise.

dead-object? Returns true if the argument is a dead ERIC

object, nil otherwise.

'

5.3 Matching Facility

The pattern matching facility of ERIC is available for you

to use via the ematch function, of the form:

(ematch pattern datum)

which matches the datum against the pattern. Pattern may contain

pattern variables and wildcards. There are two caveats when

pattern matching: the same pattern variable should not appear

twice in the same pattern; and pattern variables should not

appear immediately after a + or +var wildcard.

The result returned by ematch is one of three possibilities:

NIL, if there is no match; T, if the match is successful but

there are no variables in the pattern; or an association list of

variables and bindings, if the match is successful and there are

variables in pattern. ".
4; 49
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FURTHER READING

If you are interested in reading more about some of the topics
covered in this report, these references may be of interest.

ROSS: An Object-Oriented Language for Constructing Simulations, I
Rand Note R-3160-AF, The Rand Corporation, 1984.

The ROSS Language Manual, Rand Note N-1854-AF, The Rand
Corporation, 1982.

Object-Oriented Programming: Themes and Variations, Mark Stefik
and Daniel G. Bobrow, The AI Magazine, Winter 1986, pp. 40-62.

Common Lisp: The Language, Guy L. Steele Jr., Digital Press,
1984.
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